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Abstract-In this paper we solve for the drag experienced by a hot rigid sphere which melts its way through a
cold medium. The temperature ofthe sphere is maintained by internal heat generation. The cold medium is
solid and deforms only when the hot sphere heats it above its melting point. We find that the flow isconfined to
a thin layer about the forward hemisphere when the Peeler number is much greater than a known function of
the Stefan number. We apply our results to the China Syndrome problem and show that in about 2000years a

nuclear reactor core could melt its way through the solid earth to the earth's core.

l'\O~IEl'\CLATURE

Cp specific heat capacity of melt
Fb buoyancy force
Fd drag force
9 acceleration due to gravity
II internal heat generation rate per unit mass
llo initial internal heat generation rate per unit

mass
k thermal conductivity of melt
L latent heat of fusion
L reduced latent heat of fusion,

L+cp(Tm-Too )
P pressure
Po pressure at equator
Pe Peclet number, u-R]«
Q total heat flux out of sphere
R radius of sphere
Re Reynolds number, PmlloRf'l
Ste Stefan number, cp(To- TmljL'
t time
T temperature
Tm melting point of medium
To temperature on surface of sphere
Too ambient temperature of medium
u tangential velocity
fi tangential velocity averaged over the

molten layer
110 velocity of sphere
v normal velocity
x distance tangential to sphere
y distance normal to sphere

Greek symbols
o molten layer thickness
!J.p density dilTerence between sphere and

molten medium
'1 dynamic viscosity of melt
o colatitude
0* colatitude at which lubrication

approximation becomes invalid
tc thermal dilTusivity of melt
Pm density of melt
P, density of sphere

I. )1'\TRODUCTI01'O

STOKES'S problem is the calculation of the drag
experienced by a rigid sphere which moves at constant
velocity through a viscous medium. In this paper we
consider Stokes's problem with melting. We calculate
the drag experienced by a hot rigid sphere which melts
its way through a cold rigid solid. Heat transfer from the
sphere melts the medium and the flow of the viscous
melt allows the sphere to move through the solid
medium. The problem has a number of possible
applications to geophysics, One example is magma
migration [1]. A magma body may melt its way
through the solid mantle and crust of the earth. Another
is core formation [2]. Bodies ofiron may have melted
their way through the earth's mantle during the
formation of the earth's core. Detached lithospheric
slabs may also fall into the mantle by this mechanism
[3].

A related problem is the so-called China Syndrome
[4]. For a given size and rate of heat release, how fast
will a nuclear reactor core melt its way through the
earth? In this paper we will emphasize the problem in
which the required heat is generated within the sphere.
An alternative source of heat is the gravitational
potential energy of a heavy sphere which melts its way
through a solid medium. The potential energy is
converted into heat by viscous dissipation.

In order to carry out the analysis we assume that the
sphere of radius R is fixed and that the solid medium
moves toward the sphere at a velocity 110(see Fig. 1).We
assume that the flow of melt is confined to a thin layer of
thickness 0 in front of the sphere. We will see that
(1JfR) « 1 whenever the Peclct number is much greater
than a known function of the Stefan number. Behind
the sphere is a cylindrical molten wake. When
(ojR) « 1,we can use the lubrication approximation to
simplify the Navier-Stokes equation. In Stokes's
problem the inertial elTects are negligible if Re« 1.
However, if the flow is confined to a thin layer, then the
inertial terms can be neglected if(bjR)Re« 1 [5]. We
assume that drag and heat flux are negligible on the.
base of the sphere. The energy equation is solved using
an approximate integral method. The related problem
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The continu ity equation for boundary layer flow or
lubrication flow over a sphere is [5]

a ( . 0) . 0 av
;;- U Sin +Sin - = O.
vx ay

(8)

Inserting equation (3) into equation (8) and integrating
with respect to y yields

- I d
2p

(1 3 I 2) 1 dp
v = 2;/ dx 2 "3 y - 2y 8 - 211R dx

(
1 3 I 2) 1 2dp d8x cot 0 - y - - }' <5 + - y - -, (9)
3 2 411 dx dx

where we have used x = RO and v(y = 0) = O. Then
inserting equation (7) into equation (9) and evaluating
at y = <5, we obtain

FIG. I. Geometry for Stokes's problem with melting.

of the melting of a block of ice by a hot plate has been
studied experimentally and theoretically by Emmons
[6].

v(y = <5) = -Uo cos O. (10)

n(R sin 0)2110 = 2nR8it sin 0, (4)

Assuming a solid spherical body, the boundary
conditions on tangential velocity are

where 8 is a funct ion of O. We assume 8/R « I so that
U/IIO » I. Thus it is a consistent approximation to
requireu = Oaty = 8.Thesolutionofequations(1)and
(2) is

(12)

(II)
er er a2 T

U-+V-=K--.ax oy ay2

Integrating the second term on the LHS by parts and
evaluating the RHS yields

f.~ ~(uT sin O}dy-uoTm cos 0 sin 0
o ax

= K sin 0[aT (y = <5)- aT (y = o)J. (13)
ay ay

The first term on the LHS of equation (13) is equal to

dd
x

[sin 0 I: «t dy1 (14)

since u(y = b) = O. Hence equation (13) becomes

dd
x

[sin 0 I: uT dyJ= uoTm sin 0 cos 0

+t.: sin 0 [~T (y = b)- aT (y = o)J. (15)
vy ay

Instead of solving the partial differential equation (11),
we integrate equation (11) over the molten layer to
obtain an ordinary differential equation in x. Related
approximate methods are the momentum integral
method of boundary layer theory [5] and the heat
balance integral method for the heat conduction
equation [7]. Multiplying equation (11) by sin 0 and
integrating with respect to y yields

Finally, we use conservation of energy to determine
the variation of the molten layer thickness with
colatitude. When (<5/R)« 1, the steady-state energy
equation becomes [5]

f.
~ aT f.~ aT
'u- sin 0 dy+ v- sin 0 dy

o ax 0 ay

I a2T= K -- sin 0 dy.
o ay

(6)

(5)

(7)

(2)

(3)

(1)

u=o,

u = 0,

y=O:

}' = 8:

_ 1I0 R .
U =--SIn O.

2b

From equation (3) we obtain

1 f.~ -I dp
it = ~ 0 u dy = T2,/ dx b

2
•

Combining equations (5) and (6) yields

dp -611110R.
dx = b3 SIn O.

or

I dp
u = - - y(y-8).

211 dx

We next use conservation of mass to find the
relationship between the pressure gradient and the
molten layer thickness. We find the pressure gradient
by equating the mass flux ahead of the sphere to the
mass flux about the sphere, and then show that the
answer we obtain is consistent with the continuity
equation . From Fig. I, we see that

2. Al'\ALYSIS

We first consider conservation of momentum. Upon
application of the lubrication approximation, the
Navier-Stokes equation becomes [5]

a2u dp
II ay2 = dx'
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The requ ired boundary conditions on the tempera
ture are

4

Y= 0:

y=i5:

Y= e5:

1'= To,

r = Tm ,

aT = _ PmUo C cos O.
ay k

(16)

3

where we have used x = RO. With the boundary
condition d8/dO = 0 at 0 = 0, the solution to equation
(18) is

(24)

(26)

And in the limit St e -+ 0 this reduces to

Q = nR 2PmlloC.

00 2 3 4 5 6 -7 8 9 10
51e

FIG.2. For a solid sphere, 0 = ,,!(Sle)/uo cos O. where 0 is the
molten layer thickness, Uo is the velocity of the sphere , K is the

thermal diffusivity of the melt and 0 is colatitude.

In this limit th e heating required per unit time is the
latent heat of the volume nR211

0'
We next determine the drag on the spherical body.

From equations (3)and (7) we see that the shear stress is
of the order of (IllIoR/ (j2), while the pressure is of the
order of (IIIIOR2/ (j3). If«(j/R) « 1, then the drag due to
shear stress is negligible compared to the drag due to
pressure. Hence we evaluate the integral

Fd = 2nR 2 5:'2(p - Po) cos 0 sin 0 dO, (25)

where Po is the pressure at 0 = n/2 which we assume is
the pressure on the base of the sphere. Inserting
equation (19)into equation (7), replacing x with RO, and
integrating, we obtain

311R211~ 40
P- Po = 2K3f3(Ste) cos .

Substitution of equation (26) into equation (25) and
integrating yields

(19)

(17)

(20)

(21)

(18)

x Ste
(j= .

110 cos 0

(j = ".!(Ste) ,
110 cos 0

For small Ste, we find

The reduced latent heat of fusion C takes account of
both the latent heat offusion Land the internal energy
Cp(Tm - 1'",) ofthe solid medium as it is heated upstream
of the melting front. We further ' assume that the
temperature profile can be adequately represented by a
quadratic polynomial in y. The quadratic polynomial
that satisfies the boundary conditions (16) is

1'= To+y[-2(T
o-Tm) +PmlloC cos oJ
() k

2[10':'" Tm PmlloC J+y -i5-2--~COSO.

where

Insert ing equ ation (17) into equation (15), we obtain

dt5 ,,[ 1108
-=--- -3Ste--
dO 110 sin 0 "

x (2 cos 0- sin
2

0)_20+20 8 "Ste oJ,
cos 0 110 cos

1{ 3 [9 J1 /2}
{(a)=2 T a - lO+ 4a2+70a+l00 .

Bence from equations (17) and (21) we see that the
temperature profile becomes linear in y as the Ste -+ O.
We see moreover that (e5/R)« 1 whenever Pe » f(Ste).
The dependence off(Ste) on Ste from equation (20) is
given in Fig . 2.

As mentioned above, we neglect the heat flux to the
base of the sphere. Thus the total heat loss from the
sphere is given by

(28)

(27)

r,/2 er
Q= -2nR2 Jo kay(Y = O)sin 0 dO. (22)

m1R411~

Fd = 2K3f3(Ste)'

And for small values of Ste, we obtain

m1R411~

Fd = 2K3(Ste)3'

From equation (19) we see that the lubrication
approximation, «(j/R) « 1, is invalid for colatitude
o~ 0*, where

0* = (1/IO)cos- 1 [f(Ste)/Pe]. (29)

Subst ituting equations (17) and (19) into equation (22), .
we obtain

2 . [2(10-Tm) PmC]
Q = 7tR kilo Kf(Ste) - k . (23)

However, we can easily show that the contribution to
the heat flux and drag from the region 0* ~ 0 ~ n/2
goes to zero asf(Ste)/Pe goes to zero. Evaluating the
integral in equ ation (22) between 0* and n/2 yields
equation (23) multiplied by [f(Ste)/Pe]2. Evaluating
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3

2

medium due to the density difference between the
sphere and the medium. We assume that heat is
generated within the sphere at a rate 1I per unit mass .
The total heat loss is related to the heat generation by

4
Q = 37T.R 3psH , (34)

00 2 3 4 5 6 7 8 9 10
SIc

FIG. 3. For a fluid sphere, 0 = Kg(Ste}/uo cos 0, where 0 is the
molten layer thickness, K is the thermal difTusivity of the melt

and 0 is colatitude.

(35)

(36)

(37)

Thus for small rates of heat production the velocity of
the sphere is linearly dependent on R and II and is
independent of the buoyancy force and melt viscosity.
The buoyancy force and melt viscosity are contained in
equation (35) through their relation to To.

The buoyancy force on the spherical body is given by

4
Fb = 3 7T.g/l pR3

,

where Ps is the density of the spherical body. The
isothermal boundary condition on the surface of the
sphere is still applicable if the thermal conductivity of
the sphere is assumed to be much greater than the
thermal conductivity of the melt. For a fluid sphere,
vigorous internal convection could maintain the
isothermal boundary condition. Combining equations
(23) and (34) we obtain

(4/3)(RPsH/k)

which is a balance between the heat generated within
the spherical body and the heat lost to the molten layer.
IfH is sufficiently small, the Stefan number is also small
and equations (24) and (34) combine to give

4 RPsH
tlo=---

3 PmG'

(30)

(31)

y=O:

We follow the same procedure as above to obtain

dp - 3fltloR . 0
dx = 2cP Sin,

and

the integral in equation (25) between O· and 7T./2 yields
equation (27) multiplied by [f(Ste)/Pe]6.

We also consider the drag and heat flux for a fluid
sphere for which the viscosity of the molten medium is
much greater than the viscosity of the sphere and for
which the surface tension is sufficiently great to
maintain the spherical shape. In this case the thermal
boundary conditions are the same as before and the
velocity boundary conditions become

all
v = 0, ay = o.

J. DISCUSSION

We now use the above analysis to find the velocity of
a hot solid sphere which rises or falls through a cold

1
g(a) ="7 {-40-9 Ste

+[1600+ 12S0Ste+Sl(Ste)2r/2}. (33)

The results for heat flux for a fluid sphere are identical to
those for a solid sphere withf(Ste) replaced by g(Ste).
The drag on a fluid sphere is a quarter the drag on a
solid sphere with f(Ste) replaced by g(Ste). The
dependence of g(Ste) on Ste from equation (33)is given
in Fig. 3.

Results (31H33) assume that the fluid sphere is
inviscid. If the viscosity of the fluid sphere and the
viscosity of the molten medium were comparable, then
it would be necessary to take into account the internal
dynamics of the fluid sphere. There would be an
additional drag due to the flow within the sphere and
the net drag would be increased accordingly.

(39)

(40)

where /lp = Ps- Pm' Equating this buoyancy force to
the drag given by equation (27) yields

. [89/lPK3f3(Ste)] 1/4

110 = 3flR . (3S)

Since (8/R)« I, we can neglect the density difference
between the solid medium and the molten medium. For
small Ste, equations (2S) and (37) combine to give

G (3RfI1l6)1/3
To=Tm + - -- .

KCp Sg/lp

Substitution of equation (35) gives

4 1 (fIP: H4R5)1/3
To=T.+--

m 3 KCp 2g/lp~p~ .

IfR, H, and the physical properties are prescribed, it is
in general necessary to solve equations (35) and (3S)
numerically for To and tlo. However, if II is sufficiently
small, tlo can be obtained from equation (36) and To
from equation (40).

As a specific example we consider the China
Syndrome problem. We assume that after meltdown a
nuclear reactor core can be modeled as aspherical body
with internal heat generation. Our object is to
determine how fast the core will melt its way into the

(32)8 = Kg(Ste) ,
tlo cos 0

where
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interior of the earth. For rock properties we take
k = 0.01 cal cm- I S-I °C-1, Pm = 2.7 g cm >', ,,=
0.01 cm 2 s-1,c p = 0.25 cal g-I S-I, 11= 100 poise, L =
100 cal g-I, Too = O°C and r; = 1200°C [8]. For the
reactor core we take P. = 9 g cm - 3, R = 150 ern, and
use the Wigner-Way empirical correlation for heat
production

with II0 = 5.3 cal g-I s -I and t in seconds (R. J. Miller,
personal communication). The dependence of10and !/o

on llfrom eq uations (35)and (38) is given in FigA. Also
included are the small II approximations from
equations (36) and (40).

With the heat production prescribed as a function of
time by equation (41), the temperature and velocity
of the sinking reactor core are obtained from equa
tions (35) and (38). The velocity is then integrated
to give the depth of the reactor as a function of time.
In Fig. 5(a) we have assumed Ho = 5.3 cal g-I s-1,
in Fig. 5(b) H o = 0.53 cal g-I s-1, and in Fig. 5(c)
II0 = 0.053 cal g - I S- I. If the reactor core has its full
heat productivity it will melt its way to the earth's core
in about 2000 years. If this heat productivity is reduced
by a factor of 10 due to dilution or other effects it will
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FIG. 4. The solid curves are obtained from numerical
integrations of equations (35) and (38) which give (a) the
temperature and (b) the velocity of the reactor core as a
function of the internal heat production rate. The dashed lines
are the small II approximations from equations (36)and (40).
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FIG. 5. The depths of a reactor core as a function of time as it
melts its way into the interior of the earth for (a) II = 5.3 cal

g-I s-t, (b) 0.53 cal g-I S-I, and (c) 0.053 cal g-I S-I.

take about 30000 years, and if the dilution is by a
factor of 100 it will take about 500000 years.

It should be emphasized that many approximations
are involved in the application of our analysis to the
China Syndrome problem. Probably the most serious is
our assumption that, after meltdown, it is appropriate
to consider the reactor core as a coherent body. It may
be very substantially diluted by mixing with other
structural units. Although we have attempted to model
this effect by reducing H by factors of 10and 100, this is
certainly only an approximation. Also the reactor core
may not be spherical, but this is unlikely to introduce
large errors.



1630 STEVEN H. EMERMAN and D. L. TURCOTTE

Acknowledqements-«We would like to thank R. J. Miller for
helpful discussions. This research has been supported by the
Division of Earth Sciences, National Science Foundation
under Grant EAR 81-21053.This is contribution 738 of the
Department of Geological Sciences, Cornell University.

REFEREI\'CES

I.. B.D. Marsh, On the cooling of ascending andesitic magma,
Phil. Trails. R. Soc. Land. A288, 611-625 (1978).

2. W. M. Elsasser, Early history of the earth, in Earth Science
and Meteoritics (edited by J. Geiss and E. D. Goldberg),
Ch. I. North-Holland, Amsterdam (1963).

3. D. A.Christoffeland I. M.Calhaen, Upper mantle viscosity

determined from Stokes's law,Nature Phys.Sci. 243,51-52
(1973).

4. N. C. Rasmussen, J. Yellin, D. J. Kleitman and R. B.
Stewart, Nuclear power: can welivewith it?, Tech. Rev. 81,
32-46 (1979).

5. H. Schlichting, Boundary Loyer Theory(7th edn.], Ch. 6, II,
12. McGraw-Hili, New York (1979).

6. H. W. Emmons, Natural convection heat transfer
correlation, in Studies in Mathematics and Mechanics,
pp. 232-241. Academic Press, New York (1954).

7. D. Langford, The heat balance integral method, lnt.Ji Heat
Mass Transfer 16, 2424--2428 (1973).

8. D. L. Turcotte and G. Schubert, Geodynamics, Ch.4. Wiley,
New York (1982).

PROBLEr.1E DE STOKES AVEC FUSION

Resume-On traite la trainee d'une sphere rigide chaude qui se deplace en fondant sur son chemin un milieu
froid. La temperature de la sphere est maintenue par une source interne de chaleur. Lemilieu froid est solide et
ne deforme que lorsque la sphere Iercchauffeau dessus de son point du fusion. On trouve que l'ecoulcment est
confine aune couche mince sur l'hemisphere amont quand Ie nombre de Peclet est superieur aune fonction
connue du nombre de Stefan. On applique les resultats au syndromechinois et on montrequ'il faut deux mille

ans aun coeur de reacteur nucleaire pour arriver au coeur de la Terre atravers la couche solide.

DAS PROBLEM VON STOKES MIT SCHMELZVORGANGEN

Zusammenfassung-In diesem Aufsatz wird der Widerstand ermitteIt, den eine heille,starre Kugel erfahrt,
welche sich ihren Weg dureh ein kaItes Medium schmilzt. Die Temperatur der Kugel wird durch innere
Wiirmequellen aufrechterhalten. Das kalte Medium ist fest und deformiert sich nur dann, wenn es durch die
heille Kugel iiber seinen Schmelzpunkt erwiirmt worden ist. Es zeigt sich, daB die Striimung auf cine diinne
Schicht an der vorderen Hiilfte der Kugel begrenzt ist, so lange die Peclet-Zahl wesentlichgriiBer ist als eine
bekannte Funktion der Stefan-Zahl, Durch Anwendung der Ergebnisse auf das Problem des "China
Syndroms" wird gezeigt, dall sich der Kern eines nuklearen Reaktors innerhalb von ungefahr zweitausend

Jahren einen Weg durch die feste Erdkruste hindurch bis ins Zentrum der Erde schmelzen kann.

3A,uAQA CTOKCA B CJ1YQAE nJIABJ1EHHR

AHHOTa\lHlI-,uallo peureaue 1V1R onpeneneuns Jl060BOro conporuanenas, ncnsrrstaaesroro narperoii
ynpyroil cljJepoii, nponnaansrourell XOJlO.aHYIO cpeny, Texmeparypa cljJepLi nonaepxnaaerca sa cser
snyrpeaaero IICTO'lHIIKa TenJla. Xononaas cpena npencraanser cotion TBepJlhlii MaTepllaJl, xoropun
.aeljJop~lIIpyeTCft TOJlhKO OT .aeiiCTBIIR cljJephl, narperoil asnue TO'lKII nnaaneuna. Hauneao, 'ITO
Te'lelllle MaTepllaJla orpanuxeuo TOHKIIM c,10e~1 y nepenaeii nonycpepsr, xorna '1I1CJlO Ilexne
HaMlloro npeasnuaer 113BeCTllYlO ljJyllKltlllO '1I1CJla Crecaua. Flonyxeunsre peaynsraru ucnonsaoaauu
D.-1ft peurenns 3aJla'll! "xnraiicxoro CIIH.apoMa" II noxaaauo, 'ITO npasrepno xepea nse ThlCft'll! ,1eT
axraanas aoua anepnoro peaxropa Morna 6hl nponnaanrs TBepJlylO MallTi110 3eMJlII II JlOCTII'Ih

ee aapa.




