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Abstract—In this paper we solve for the drag experienced by a hot rigid sphere which meltsits way through a
cold medium. The temperature of the sphere is maintained by internal heat generation. The cold medium is
solid and deforms only when the hot sphere heats it above its melting point. We find that the flowis confined to
athin layer about the forward hemisphere when the Péclet number is much greater than a known function of
the Stefan number. We apply our results to the China Syndrome problem and show that in about 2000 years a
nuclear reactor core could melt its way through the solid earth to the earth’s core.

NOMENCLATURE

c, specific heat capacity of melt

F, buoyancy force

Fy drag force

g acceleration due to gravity

H internal heat generation rate per unit mass

H, initial internal heat generation rate per unit
mass

k thermal conductivity of melt

L latent heat of fusion

L reduced latent heat of fusion,
L+ Cp(Tm - Too)

P pressure

Do pressure at equator

Pe  Péclet number, uyR/x

0 total heat flux out of sphere

R radius of sphere

Re  Reynolds number, p.tioR/n

Ste  Stefan number, ¢ (T, — T,)/L’

t time

T temperature

T, melting point of medium

Ty temperature on surface of sphere

T, ambient temperature of medium

u tangential velocity

i tangential velocity averaged over the
molten layer

Uy velocity of sphere

v normal velocity

x distance tangential to sphere

y distance normal to sphere

Greek symbols

é molten layer thickness

Ap  density difference between sphere and
molten medium

1 dynamic viscosity of melt

0 colatitude

o* colatitude at which lubrication
approximation becomes invalid

K thermal diffusivity of melt

P density of melt

Ps density of sphere

HMT 26:11-D

1. INTRODUCTION

STOKES's problem is the calculation of the drag
experienced by a rigid sphere which moves at constant
velocity through a viscous medium. In this paper we
consider Stokes’s problem with melting. We calculate
the drag experienced by a hot rigid sphere which melts
itsway through a cold rigid solid. Heat transfer from the
sphere melts the medium and the flow of the viscous
melt allows the sphere to move through the solid
medium. The problem has a number of possible
applications to geophysics. One example is magma
migration [1]. A magma body may melt its way
through the solid mantle and crust of theearth. Another
is core formation [2]. Bodies of iron may have melted
their way through the earth’s mantle during the
formation of the earth’s core. Detached lithospheric
slabs may also fall into the mantle by this mechanism
[31.

A related problem is the so-called China Syndrome
[4]. For a given size and rate of heat release, how fast
will a nuclear reactor core melt its way through the
earth? In this paper we will emphasize the problem in
which the required heat is generated within the sphere.
An alternative source of heat is the gravitational
potential energy of a heavy sphere which melts its way
through a solid medium. The potential energy is
converted into heat by viscous dissipation.

In order to carry out the analysis we assume that the
sphere of radius R is fixed and that the solid medium
moves toward the sphere at a velocity u, (see Fig. 1). We
assume that the flow of melt is confined to a thinlayer of
thickness 6 in front of the sphere. We will see that
(6/R) « 1 whenever the Péclet number is much greater
than a known function of the Stefan number. Behind
the sphere is a cylindrical molten wake. When
(6/R) « 1, we can use the lubrication approximation to
simplify the Navier-Stokes equation. In Stokes’s
problem the inertial effects are negligible if Re « 1.
However, if the flow is confined to a thin layer, then the
inertial terms can be neglected if (5/R) Re « 1 [5]. We
assume that drag and heat flux are negligible on the.
base of the sphere. The energy equation is solved using
an approximate integral method. The related problem
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FI1G. 1. Geometry for Stokes’s problem with melting.

of the melting of a block of ice by a hot plate has been
studied experimentally and theoretically by Emmons

[61
2. ANALYSIS

We first consider conservation of momentum. Upon
application of the lubrication approximation, the
Navier-Stokes equation becomes [5]

o*u dp

Ny =—.

15 dx
Assuming a solid spherical body, the boundary
conditions on tangential velocity are

u=0,

()

y=0:
@

y=24: u=0,

where § is a function of 0. We assume §/R « 1 so that
ufu, > 1. Thus it is a consistent approximation to
requireu = O0aty = 6. Thesolutionofequations(1)and
(2)is

1 dp

=2 dx yy—a). Q)

u

We next use conservation of ‘mass to find the
rclationship between the pressure gradient and the
molten layer thickness. We find the pressure gradient
by equating the mass flux ahead of the sphere to the
mass flux about the sphere, and then show that the
answer we obtain is consistent with the continuity
equation. From Fig. 1, we see that

n(R sin 0)*uy = 2nRSi sin 0, @
or
= % sin 0. )
From equation (3) we obtain
1 —1dp
7=~ dy = — —~5%
=5 L uey 125 dx ©)
Combining equations (5) and (6) yields
dp —6qugR
—(E = T sin 0. (7)
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The continuity equation for boundary layer flow or
lubrication flow over a sphere is [5]

)
— (u sin 0)+sin 021i =0. (8)
Ox ay

Inserting equation (3) into equation (8) and integrating
with respect to y yields

—1dp (1 , 1, 1 dp
§)— — —
(3y 27 24R dx

1 1 1 ,dpdé
t 0| =y>—=y¥ |+ —y'——,
X co <3y 27 )+4n) dx dx ©)

T a3V T2

where we have used x = R0 and v(y = 0) = 0. Then
inserting equation (7) into equation (9) and evaluating
at y = §, we obtain

t(y =6)= —u, cos 0. (10)

Finally, we use conservation of energy to determine
the variation of the molten layer thickness with
colatitude. When (6/R) « 1, the steady-state energy
equation becomes [5]

oT oT 2T
u—

F vay =K e (11)
Instead of solving the partial differential equation (11),
we integrate equation (11) over the molten layer to
obtain an ordinary differential equation in x. Related
approximate methods are the momentum integral
method of boundary layer theory [5] and the heat
balance integral method for the heat conduction
equation [7]. Multiplying equation (11) by sin 0 and
integrating with respect to y yields

3 oT é

u—sin 0 dy+ va—T sin 0 dy

o Ox o Oy
82T

=Kk | ——sin 8dy.

12
R (12)

Integrating the sccond term on the LHS by partsand
evaluating the RHS yields

s
J i(uT sin 0)dy—u,T,, cos 0 sin 0
0 ox

. oT oT
= K sin 0[50) = 6)—5 = 0)]. (13)

The first term on the LHS of equation (13) is equal to

d &
a[sin 0 J'o uT dy],

since u(y = 6) = 0. Hence equation (13) becomes

(14)

d 3
—[sin 0 '[ uT dy:I = u,T,, sin 0 cos 0
dx

]

+xsin 0 [ﬂ(y —5-T - 0)]. (15)
dy dy
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The required boundary conditions on the tempera-
ture are

y=0: T=T,
y=20: T=T,
oT L
y=3o i —"—"“;°_cos 0.  (16)

The reduced latent heat of fusion I takes account of
both the latent heat of fusion L and the internal energy
¢,(T,,— T,,) of the solid medium as it is heated upstream
of the melting front. We further- assume that the
temperature profile can be adequately represented by a
quadratic polynomial in y. The quadratic polynomial
that satisfies the boundary conditions (16) is

—2T,—T. L
T=To+yl: (; m)+pmlk"0 cosO]
050]. 17

To—T, poticl
2 0 m _ Fm™0
+y [ 5 ok
Inserting equation (17) into equation (15), we obtain
dé K 1y
a0 " ig sin 0 [‘35‘2‘7

sin? 0 K Ste
- -20 et
X (2 cos 0 o 0) +20 Bug cOS 0], (18)

where ave have used x = R0. With the boundary
condition dé6/d0 = 0 at 0 = 0, the solution to equation
(18)is

_ f(Ste)

" g cos 0 (19)
where
1{-3 9 172
f(a) =§{~2——a—10+|:za2+700+100:| } (20)
For small Ste, we find
= u:fotse 0 @1)

Hence from equations (17) and (21) we see that the
temperature profile becomes linear in y as the Ste — 0.
We see moreover that (6/R) « 1 whenever Pe > f(Ste).
The dependence of f(Ste) on Ste from equation (20) is
given in Fig. 2.

As mentioned above, we neglect the heat flux to the
base of the sphere. Thus the total heat loss from the
sphere is given by

x/2

0 = —27R? J 2)

0

aT
k—(y =0)sin 0 d0.
oy

Substituting equations (17) and (19) into equation (22),

we obtain

0 = nR%ku, [M _ pLL':l (23)

kf(Ste) k
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F1G. 2. For a solid sphere, § = xf(Ste)/u, cos 0, where d is the
molten layer thickness, ug is the velocity of the sphere, x is the
thermal diffusivity of the melt and 0 is colatitude.

And in the limit Ste — 0 this reduces to

Q = nR%*p u,L. (24)

In this limit the heating required per unit time is the
latent heat of the volume nR?u,,.

We next determine the drag on the spherical body.
From equations(3) and (7) we see that the shear stress is
of the order of (yuyR/62), while the pressure is of the
order of (quoR*/6%). If (§/R) « 1, then the drag due to
shear stress is negligible compared to the drag due to
pressure. Hence we evaluate the integral

z/2
Fg= 2nR2J (p—po)cos O0sin 0 d0,  (25)
0

where p, is the pressure at 0 = /2 which we assume is
the pressure on the base of the sphere. Inserting
equation(19)into equation (7), replacing x with R0, and
integrating, we obtain

_ 3R%u4;
=2 (Ste) ©

Substitution of equation (26) into equation (25) and
integrating yields

P—Po 0s* 0. (26)

nnR*ug
= 27
47 26313(Ste) 27)
And for small values of Ste, we obtain
nnR*u§ 28)

¢ 2k3(Ste)®’

From equation (19) we sce that the lubrication
approximation, (6/R) « 1, is invalid for colatitude
0 > 0%, where

0* = (1/10)cos ™! [ f(Ste)/Pe].

However, we can easily show that the contribution to
the heat flux and drag from the region 0* < 0 < #/2
goces to zero as f(Ste)/Pe goes to zero. Evaluating the
integral in equation (22) between 0* and =/2 yields
equation (23) multiplied by [ f(Ste)/Pe]% Evaluating

(29)
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g(Ste)

=2 35 4 5 6 7 8 6§ 10
Ste

F1G. 3. For a fluid sphere, § = kg(Ste)/u, cos 8, where & is the
molten layer thickness,  is the thermal diffusivity of the melt
and & is colatitude.

the integral in equation (25) between 0* and 7/2 yields
equation (27) multiplied by [ f(Ste)/Pe]®.

We also consider the drag and heat flux for a fluid
sphere for which the viscosity of the molten medium is
much greater than the viscosity of the sphere and for
which the surface tension is sufficiently great to
maintain the spherical shape. In this case the thermal
boundary conditions are the same as before and the
velocity boundary conditions become

du
=0: =0, —=0. 30
y v % (0)
We follow the same procedure as above to obtain
dp  —=3nugR
a = _26—3__ sin 0, (31)
and
Kkg(Ste)
= X 32
ug cos 0 (32)
where

1
g(a) = 7{—40—-9Ste

+[1600+ 1280 Ste + 81(Ste)?1'/2}.  (33)

Theresults for heat fluxfor a fluid sphere areidentical to
those for a solid sphere with f(Ste) replaced by g(Ste).
The drag on a fluid sphere is a quarter the drag on a
solid sphere with f(Ste) replaced by g(Ste). The
dependence of g(Ste) on Ste from equation (33) is given
in Fig. 3.

Results (31)33) assume that the fluid sphere is
inviscid. If the viscosity of the fluid sphere and the
viscosity of the molten medium were comparable, then
it would be necessary to take into account the internal
dynamics of the fluid sphere. There would be an
additional drag due to the flow within the sphere and
the net drag would be increased accordingly.

3. DISCUSSION

We now use the above analysis to find the velocity of
a hot solid sphere which rises or falls through a cold
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medium due to the density difference between the
sphere and the medium. We assume that heat is
generated within the sphere at a rate H per unit mass,
The total heat loss is related to the heat generation by
0= 3xR2pH, (4
where p, is the density of the spherical body. The
isothermal boundary condition on the surface of the
sphere is still applicable if the thermal conductivity of
the sphere is assumed to be much greater than the
thermal conductivity of the melt. For a fluid sphere,
vigorous internal convection could maintain the
isothermal boundary condition. Combining equations
(23) and (34) we obtain
_ (4/3)(Rp,H/K)

[2(To— T)/wf (Ste)] —(pmL/kY
which is a balance between the heat generated within
the spherical body and the heat lost to the molten layer.
If H is sufficiently small, the Stefan number is also small
and equations (24) and (34) combine to give

4 Rp,H
Uy == .
3 paL

(35)

lig

(36)

Thus for small rates of heat production the velocity of
the sphere is lincarly dependent on R and H and is
independent of the buoyancy force and melt viscosity.
The buoyancy force and melt viscosity are contained in
equation (35) through their relation to Tj,
The buoyancy force on the spherical body is given by
4
F,= EngApR:’, (37
where Ap = p,— p,.. Equating this buoyancy force to
the drag given by equation (27) yields

B l:SgApx3f3(Ste):|”4

o 3nR (38)

Since (6/R) « 1, we can neglect the density difference
between the solid medium and the molten medium. For
small Ste, equations (28) and (37) combine to give

L R 4\ 1/3
T, =T, + = 3Ryug . (39)
Ke, \ 8gAp
Substitution of equation (35) gives
4 1 (npfH*R>\'3
=T+ -—\-—"——+ 40
0= fmt 3 ke, <2gApL’pf;, (40)

If R, H, and the physical properties are prescribed, it is
in general necessary to solve equations (35) and (38)
numerically for Ty and 1. However, if H is sufficiently
small, 1, can be obtained from equation (36) and T,
from equation (40).

As a specific example we consider the China
Syndrome problem. We assume that after meltdown a
nuclear reactor core can be modeled asaspherical body
with internal heat generation. Our object is to
determine how fast the core will melt its way into the
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interior of the earth. For rock properties we take
E=00lcalem™!s™'°C Y p =27 gem™3, k=
00tcm?*s™%, ¢, =0.25calg™'s™ !,y = 100 poise, L =
100cal g~ 1, T,, = 0°C and T,, = 1200°C [8]. For the
reactor core we take p, =9 g cm ™3, R = 150 cm, and
use the Wigner—Way empirical correlation for heat
production

H = 0.0622Hyt™°2, @1

with Hy = 5.3calg™'s™ ! and tinseconds(R. J. Miller,
personalcommunication). The dependence of Tyand 1,
on H fromequations (35)and (38)is given in Fig. 4. Also
included are the small H approximations from
equations (36) and (40).

With the heat production prescribed as a function of
time by equation (41), the temperature and velocity
of the sinking reactor core are obtained from equa-
tions (35) and (38). The velocity is then integrated
to give the depth of the reactor as a function of time.
In Fig. 5(a) we have assumed H, =53 cal g7! s71,
in Fig. 5(b) Hy = 0.53 cal g~! s7!, and in Fig. 5(c)
Hy =0.053 cal g1 s7 L. If the reactor core has its full
heat productivity it will melt its way to the earth’s core
in about 2000 years. If this heat productivity is reduced
by a factor of 10 due to dilution or other effects it will
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FiG. 4. The solid curves are obtained from numerical
integrations of equations (35) and (38) which give (a) the
temperature and (b) the velocity of the reactor core as a
function of the internal heat production rate. The dashed lines
are the small H approximations from equations (36) and (40).
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F1G. 5. The depths of a reactor core as a function of time as it
melts its way into the interior of the earth for (a) H = 5.3 cal
g 157, (6)0.53 cal g™ s, and () 0.053 cal g~ 1 s~ L,

take about 30000 years, and if the dilution is by a
factor of 100 it will take about 500 000 years.

It should be emphasized that many approximations
are involved in the application of our analysis to the
China Syndrome problem. Probably the mostseriousis
our assumption that, after meltdown, it is appropriate
to consider the reactor core as a coherent body. It may
be very substantially diluted by mixing with other
structural units. Although we have attempted to model
this effect by reducing H by factors of 10 and 100, this is
certainly only an approximation. Also the reactor core
may not be spherical, but this is unlikely to introduce
large errors.
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PROBLEME DE STOKES AVEC FUSION

Résumé—On traite la trainée d'une sphére rigide chaude qui se déplace en fondant sur son chemin un milieu

froid. La température de la sphére est maintenue par une source interne de chaleur, Le milieu froid est solidc et

ne déforme que lorsque la sphére le rechauffe au dessus de son point du fusion. On trouve que I'écoulement est

confiné a une couche mince sur I'hémisphére amont quand le nombre de Péclet est supérieur d une fonction

connue du nombre de Stefan. On applique les résultats au syndrome chinois et on montre qu'il faut deux mille
ans 4 un coeur de réacteur nucléaire pour arriver au coeur de la Terre a travers la couche solide.

DAS PROBLEM VON STOKES MIT SCHMELZVORGANGEN

Zusammenfassung—In diesem Aufsatz wird der Widerstand ermittelt, den eine heiBe, starre Kugel erfdhrt,
welche sich ihren Weg durch ein kaltes Medium schmilzt. Die Temperatur der Kugel wird durch innere
Wirmequellen aufrechterhalten. Das kalte Medium ist fest und deformiert sich nur dann, wenn es durch die
heiBe Kugel iiber seinen Schmelzpunkt erwidrmt worden ist. Es zeigt sich, daB die Stromung auf ¢ine diinne
Schicht an der vorderen Halfte dér Kugel begrenzt ist, so lange die Peclet-Zahl wesentlich groBer ist als eine
bekannte Funktion der Stefan-Zahl. Durch Anwendung der Ergebnisse auf das Problem des “China-
Syndroms” wird gezeigt, daB sich der Kern eines nuklearen Reaktors innerhalb von ungefahr zweitausend
Jahren einen Weg durch die feste Erdkruste hindurch bis ins Zentrum der Erde schmelzen kann.

3AJJAYA CTOKCA B CIIYYAE IJIABJEHHA

Annotaims—JlaHo pelucHHEe M8 onpencaeHHa J060BOro CONPOTHBIICHHS, HCMBITHIBAEMOrO HarpeToit
ynpyroii cdepoii, nponnasastoweii xonoauyo cpeay. Temneparypa cdepsl noanepixHueaeTcs 3a cyer
BHYTPCHHETO KCTOYHHKA Tenna. XosnoaHas cpeaa npeacrabpaseT coboit TBepablii MaTepHal, KOTOPHIi
nedpopMupyeTcs TONBKO OT feiicTBHA cbepsl, Harperoil Bullue TOYkH muasienus. Haiinewo, 4to
TeueHHe MaTepHaJa OrpaHH4YeHO TOHKHM CloeM Yy mnependeii nonycdepnl, korma yucno [Ilexae
HAMHOTO NpeBbIIAcT H3BeCTHYIO ¢yHkimio yncna Crepana. IMTonywenHsie pe3ysTaThl HCHONL3OBAHBI
LIS pelleHHs 3a/a4i “‘kuraiickoro cHHApoMa™ M noxa3’aHo, YTO NPHMEPHO 4Yepe3 JBC THICAYH JeT
aKTHBHAs 30Ha SACPHOrO peaxtopa Morja Obl nNponyasuTL TBEPAYIO MAHTHIO 3eMAH M OCTHYbL
ee sapa.





